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Chapter 1

Introduction

Our world runs increasingly on software. In order to produce value, software

needs to be developed and the end result needs to be deployed to a production

runtime environment. Software that is not in use can’t produce value for the

shareholders.

This master’s thesis is a case study about two different deployment and

runtime paradigms in the context of a healthcare startup company (Kaiku

Health). This thesis compares a legacy deployment system that deploys

software to pre-configured virtual machines to a new, modern deployment

system that builds Linux container images (Docker) and then orchestrates

their deployment on container runtime infrastructure (Kubernetes).

The deployment systems of Kaiku Health were instrumented and the

resulting data was used to answer research questions. Research questions

were generated before the measurements about the deployment systems were

done. This comparison was done with the help of relevant variables identified

by earlier research [1].

Prior literature has established that software deployment performance

is relevant metric to predict the organizational performance of a company

[2], thus making software deployment performance relevant from a business

perspective.
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Chapter 2

Background

In this chapter the reader is introduced to DevOps, Continuous Integration,

Continuous Deployment and to the two different deployment paradigms rel-

evant to the matter at hand. Software runtimes pertinent to the study are

introduced. Some time is also spent discussing why DevOps matters from

the viewpoint of business objectives.

2.1 DevOps

DevOps is a loosely defined set of technical and cultural practices used in

development and operation of software products [3]. There is no single defi-

nition of these practices, but the term is commonly associated with practices

that bring development (Dev) and operations (Ops) teams closer together.

DevOps practices often aim to increase automation and lower manual work

that teams do to run routine tasks inside their software systems.

Software development is often done in teams of varying sizes and respon-

sibilities. In a small company a single team might be responsible for the

whole development flow from creating features to deploying them to produc-

tion. When companies grow, there is usually increase in teams and increased

specialization for each of those teams. Often some teams focus on adding

features (Dev) and other teams focus on keeping the software running in

11



CHAPTER 2. BACKGROUND 12

production (Ops).

This division of labour can lead to conflicts between the teams. The

development team wants to add new features and hence complexity to the

software, as the operations team wants to keep the software stable in produc-

tion [4]. Complexity and stability are often somewhat mutually exclusive, as

increased complexity can result in problems when operating the software in

production. DevOps aims to breach this gap and streamline the whole pro-

cess without lowering the quality or throughoutput of software development

process.

In practice, DevOps achieves its goal of streamlining the deployment by

automating many parts the process of software deployment. Examples of this

kind of automation are automated tests run in the specific automation envi-

ronment called Continuous Integration Server (CI-server) and automation of

the deployment of software to different environments.

2.2 Impact of Devops Practices on Organiza-

tional Performance

Why is DevOps relevant to software companies? Prior literature about the

impact of DevOps practices suggests that success in DevOps predicts the

organizational performance to some degree.

Forsgren et al. have conducted prior research on the impact of DevOps

practices to organizational performance [2]. They have studied the DevOps

practices in use by doing surveys on the industry and running statistical

analysis on the data generated by those surveys. Key finding in their work is

that some DevOps practices seem to predict organizational performance. We

will introduce some of those practices later in section 2.3. Visual overview of

the predictive power on organizational performance of each DevOps practice

can be found from Figure 2.1 and is discussed with more detail in [1].

The most relevant practice in the context of this thesis in the list De-

vOps practices listed in Figure 2.1 is continuous delivery (CD). Continuous
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Figure 2.1: Forsgren et al. results about the impact of DevOps practices to

organizational performance. Numbers marked with *** are beta-coefficients

from their regression analysis. Practices and outcomes inside boxes are sta-

tistical constructs built based on the data clustering done in the study of

Forsgren et al. Picture from [2].

Delivery is introduced in section 2.3.1. This thesis aims to measure how well

Kaiku does CD and if the attempts at improving this capability are suc-

ceeding. This measurement is done via proxy measurement of deployment

frequency.

2.3 Devops as a Set of Capabilities

How to measure how well a company is implementing DevOps?

If one asks the leadership of a company, one might get a quite rosy picture

of organizations progress in implementing DevOps. The model by Forsgren

et al. proposes more grounded measurable variables that one can use to assess

the reality of implemented practices. Their model is based on large question-
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naires with thousands of responses from hundreds of companies of different

sizes. A relevant example of those questions is “How often your organization

deploys code to the primary service or application?” with answer categories

as ranging from “on demand (multiple deploys per day)” to “fewer than once

every six months”. [1]

This thesis views DevOps as set of capabilities that an organization has

successfully acquired. This view has been advocated by Forsgren & Humble

in their research about DevOps and its impact on organizational performance

[2].

A dynamic capability is defined by Eisenhardt and Martin as “Dynamic

capabilities are the antecedent organizational and strategic routines by which

managers alter their resource base - acquire and shed resources, integrate

them together, and recombine them - to generate new value-creating strate-

gies” p.1107 [5]. In the context of this thesis the “dynamic” prefix is dropped

from capabilities, as there is no need to contrast them with “static” capabil-

ities.

Capabilities theory defines three types of capabilities for an organization:

inside-out, outside-in and spanning.

Inside-out capabilities are capabilites that act primarily inside the orga-

nization. One example of this would be Continuous Delivery pipelines, that

aim to make the development of software more streamlined and efficient [2].

This thesis is mostly about measuring one of those capabilities, the capability

to deploy software rapidly to production.

Other capability types (outside-in and spanning) will not be discussed

further, as those are not really relevant to the matter at hand. Further

information about capability theory can be found from [5].

2.3.1 Continuous Delivery (CD)

Continuous delivery is a software deployment practice that aims to keep the

software constantly in releasable condition and release it often [6]. This

can be contrasted with releasing software on some time-based schedule, for
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example three times a year. There is some evidence that releasing often

correlates with good organizational performance [2].

2.3.2 Continuous Integration (CI)

Continuous integration is a software development practice where changes

made by each developer are integrated multiple times each day [7]. In prac-

tice this means running automated tests and checking mergeability to master

software development branch automatically. The frequency of this integra-

tion depends on how often new commits are made and usually does not

require manual labour from the developers, except in the case when inte-

gration problems surface during automated tests. But these problems are

usually solved quickly, as no new work can be built on the problematic parts

of the software, as it is not merged to master before integration passes.

A relevant comparison to this continuous integration practice would be

the older model of developing software using the “waterfall” methodology,

originally introduced by Royce [8]. In waterfall projects, design, coding and

testing are done on different phases of the project. This can lead to substan-

tial delays between coding, testing and integrating different parts of software

together. New code can be built on top of old, non-integrated code, and

thus fixing the problems found in integration phase can require substantial,

recursive changes to the codebase.

Continuous integration is usually implemented by using a self-

administered CI-server or an external CI-service. This server pulls the

changes made by a developer, builds them and runs various tests to check

for regressions. Once these tests have passed, the CI flags the build as

successful.

2.4 Production Runtimes for Software

Software need to be run on some hardware and requires some amount of

external dependencies in order to be useful. A software runtime environment
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provides these dependencies. These requirements and dependecies are dif-

ferent for different software products. For example, embedded software and

web software require different dependencies and runtimes.

This thesis focuses on single web-based software and two different run-

times used for it. These are introduced in 3.2.

2.4.1 Cloud Based Virtual Machines

One common way to provide a runtime environment for web-based software is

to provision a virtual machine from a cloud provider and install an operating

system and dependencies of the software in question on it. This can be con-

trasted to buying the hardware and operating it in-house. There are multiple

benefits to subcontracting the physical operations and hardware ownership

to specialized companies, especially for smaller companies. Further infor-

mation and a modeling solution to costs estimation has been published by

Martens et al. [9].

2.4.2 Linux Containers

Encapsulating different parts of the operating system and software running

on it is a common practice in software engineering. This allows running

multiple programs fluently on the same hardware and makes managing the

environment easier.

One way to encapsulate the runtime environment of a process is building a

container around it. The Linux Kernel provides mechanisms (control groups,

namespaces) that allow us to partition the userland for container usage.

Linux containers are often mistaken as virtual machines. This is not true,

as all containers running on a single host share the same kernel. In contrast,

virtual machines are usually running their own kernel. This is illustrated

in Figure 2.2 showing comparison of solution stacks in Linux containers and

VMs.

This thesis focuses on Docker-containers, a special case of Linux contain-
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Figure 2.2: Illustration about differences of solution stacks in containers

and virtual machines. Containers and VMs share different components of

their stacks between other instances of their kind. This results in differ-

ent abstractions for resources and different security implications of resource

sharing. Illustration from Sharma et al. [10].
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ers.

Compared to normal Linux processes, containers have some overheads

in terms of performance, but the overheads are not as high as with virtual

machines [10].

From a security perspective, containers are not as isolated from the host

as virtual machines are, as containers share the underlying kernel and hence

have less security barries in place.

2.4.3 Container Orchestration

Container orchestration is quite a new and upcoming concept in software

engineering. A good introduction to the concept can be found from Emiliano

Casalicchio’s survey [11].

Container orchestration is the set of operations that infrastructure

providers and application owners undertake to define how to select, to

deploy, to monitor, and to dynamically control the configuration of multi-

container applications in the cloud [12]. The point of orchestration is to

make sure that the container running the software has all the neccessary

resources and dependecies at hand.

There are multiple different software products implementing container

orchestration with different divisions of responsibility. A quick overview of

different orchestration systems can be found from Gogouvis et. al [13].

2.4.4 Kubernetes

Kubernetes is a Container Orchestration system that is build from the

ground-up to solve the problems of running containers en masse.

The most important feature of Kubernetes is its declarative nature. This

means that users define the resources and state wanted, and Kubernetes

tries to achieve that state and create the resources it requires. This enables

many useful and interesting properties, like self-healing and somewhat pain-

less scaling.
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The main configuration unit of Kubernetes is a manifest file. Manifests

declare resources inside the cluster and describe the wanted state for these

resources.

Under the hood Kubernetes is a stack of software run on compute sub-

strate. Each copy of this software running on a machine is called a node

and these nodes together form a cluster. Cluster state is kept in the master

nodes distributed key-value-store, etcd [14], and applied to nodes via kubelet

agent running on the nodes. Master nodes with their services and kubelets

actuating the state changes on nodes create the Kubernetes control plane

[15]. This control plane is responsible for keeping the cluster state (work-

loads and their configuration etc.) in accordance of state described in the

master node’s etcd. Container workloads (eg. production software and its

components) are run on worker nodes and are orchestrated by the control

plane. These components of Kubernetes and their location in the node types

are illustrated visually in Figure 2.3.

Further analysis of Kubernetes compotents and their functions is ex-

plained in the Kubernetes documentation [16].

Kubernetes is based on the experience of Google engineers about how to

orchestrate containers at the scale of Google during the last decade [17].

Multiple cloud providers provide managed Kubernetes clusters [18]. This

provides their customers a cluster without having to take care of the configu-

ration of underlying nodes and updating Kubernetes versions. This is useful,

especially to smaller companies, because running self-managed Kubernetes

in a secure and reliable way requires intricate knowledge about Kubernetes,

which seems to be in short supply at the moment.
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Figure 2.3: Components of Kubernetes. Illustration from Kubernetes docu-

mentation [16]



Chapter 3

Case study

In this chapter Kaiku Health is introduced as a company, the development

flow in use at Kaiku Health is examined and the two deployment systems in

use at Kaiku Health are analyzed.

3.1 Kaiku Health

Kaiku Health is a Finnish healthcare software company based in Helsinki and

founded in 2012. Kaiku employs about 30-40 people and focuses on bringing

digital health interventions to all cancer patients. The main product of Kaiku

Health is Kaiku, a digital therapeutics platform used in communication be-

tween patients and healthcare personnel. Kaiku is also used to prompt the

patient for their current symptoms and by their healthcare personnel to guide

the patient based on that symptom data. A picture about how Kaiku looks

like to patients can be seen in Figure 3.1. This view shows the basic patient

landing page of the application. From this view the patient can access the

most important features of Kaiku (Conversations and Questionnaires) easily.

Kaiku also interacts with users by sending email notifications about messages

and questionnaires that should be filled.

There is some evidence in literature that this kind of activity (Electri-

cal Patient Reported Outcomes, ePRO) increases patient survival rate and

21
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Figure 3.1: A picture of a patient-view in Kaiku. Using this view the patient

is able to contact her care team (“Conversations”) and answer questionnaires

(“Fill questionnaire”).

decreases Emergency Room visits among patients [19].

Nurses and doctors have similar views tailored for their use cases. These

views can be configured based on customer requirements.

Kaiku currently is hosted on virtual machines that are provisioned from

multiple cloud service providers. Kaiku operates about 20-40 virtual ma-

chines that host the software solution around the world. These servers are

operated in a safe manner and fulfill the special needs of each customer and

their respective data protection rules and regulations of their country.

3.2 Kaiku’s Current Deployment and Run-

time System

This subchapter familiarizes the reader with the Kaiku development and

deployment systems. Kaiku customer tenancy model is introduced. A quick

overview is presented of how code changes made by a developer proceed

through the CI/CD pipeline.
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Finally the two different deployment systems in use at Kaiku are intro-

duced. These deployment systems and measuring their performance is the

main subject of this thesis.

3.2.1 Kaiku Tenancy Model

Each customer organization usually has one Kaiku instance(“site”), which

has it’s own configuration, database and ruby-processes. When a new cus-

tomer organization start using Kaiku, this configuration is generated and a

new instance is deployed for the customer organization.

3.2.2 Development Flow

Kaiku Health uses a trunk-based development flow. Developers work on

their own local copy of the software and push their changes to a remote

repository. CI-server then pulls a copy of these changes and runs integration

tests and other automated checks against that copy. Development branches

are short-lived and merge conflicts are rare.

Once the developer is satisfied with the changes, she creates a Pull Re-

quest (PR) about the changes and asks another developer to be the reviewer

of this PR. The PR can’t be merged before all the required automated tests

have passed and at least one other developer has approved the changes. This

whole development flow is illustrated in Figure 3.2.

3.2.3 Current Runtime System

Currently Kaiku is run as a Ruby on Rails (ROR) [20] application running

on nginx [21] + Phusion Passenger application server [22]. The ROR ap-

plication uses a Postgresql-database [23] to store state. This whole stack is

running on a VM provided by a cloud service provider. Kaiku also uses some

external API dependencies for object storage and error reporting, but those

are omitted from analysis for brevity. The whole stack is illustrated in Figure

3.3.
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Figure 3.3: A diagram of the old runtime system of Kaiku

3.2.4 Current Deployment System

The deployment process is handled by a developer pair who is responsible for

internal tech support at the moment. The tech support role is on rotation

and changes after two weeks. Kaiku has an internal agreement that deploys

should happen twice a week.

Deployment begins by tech support announcing her plans to deploy on

the chatroom of developers. This is done in order to make sure that any

features that might be promised to the customers will be merged before

deployment begins. Once the announcement is done and the developer in

tech support is ready, she will tag a release in Git and start the deploy script

that imperatively deploys all sites.

Each customer site is deployed in a linear fashion and by the end of the de-

ployment, all Kaiku production instances will be running the new version. If

any errors occur during the deployment of a new version, a developer assigned

to tech support will investigate and correct those errors. This deployment

flow is visualized with a sequence diagram in Figure 3.4.
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Figure 3.4: A simplified sequence diagram of Kaiku’s deployment flow on the

old deployment system. Developers assigned to tech support run scripts that

actuate the process and monitor it’s outcome.
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3.2.5 New Runtime System

The new runtime system is a set of Kubernetes clusters provided by a cloud

service provider. Kaiku application is packaged in to a Docker container

and run as workload on a Kubernetes cluster. Traffic to the Kaiku instance

is routed via Google cloud load balancer, which forwards it to the cluster

ingress. Inside the cluster routing is handled by Kubernetes using service-

resources. The relational database service is provided by the cloud provider.

This stack is illustrated with a diagram in figure 3.5.

Figure 3.5: A diagram of the new runtime system of Kaiku on Kubernetes

in Google Cloud.
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3.2.6 New Deployment System

The new deployment system is based on Linux containers, specifically on

Docker. These containers are run and managed in a Kubernetes cluster

managed by Google. Kubernetes was introduced earlier in 2.4.4.

The biggest philosophical change between Kubernetes and the old system

is that Kubernetes is declarative in nature, whereas the old system is imper-

ative. In practice this means that the old system runs commands against

the VM’s based on deployment automation scripts, and the new system ap-

plies manifests to the cluster and the cluster configures itself based on those

manifests.

In Kaiku’s case this means that these manifests are generated based on

configuration and code in the product Git repository. This generation is done

with Ruby scripts built in-house.

The new deployment is started manually by tech support tagging a re-

lease. Once the tagging is done, tech support runs the manifest generation

scripts and applies them to all clusters that are part of the deployment. Clus-

ters then enact the changes defined in the manifests and tech support can

monitor the changes with a logging script. The sequence of actions and their

targets in the new deployment system are visualized with a sequence diagram

in Figure 3.6.

The new system deploys each customer site parallel to the other sites if

the underlying Kubernetes cluster has enough spare capacity to create all

required resources.
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Chapter 4

Methodology

This chapter introduces the methodology used for measuring the deployment

systems. Deployment systems and their instrumentation are explained to

the reader. Research questions are introduced, methods for answering each

of those questions are chosen and null hypothesis and alternative hypothesis

are formulated for each question.

This thesis is a case study with measurements done on a live production

system. The thesis is written from a pragmatist-positivistic viewpoint, more

specifically meaning that efforts will be made to control the test setup in order

to make it robust, but it is acknowledged that this is not a fully controlled

study. The positivistic-pragmatic viewpoint was chosen based on information

presented by Runeson et al. [24]

The specific challenge with measuring the deployment at Kaiku Health

is that completely separating the deployment systems is unfeasible as the

whole version deployment is done on a live production system that is in use.

There is some potential for confounding variables to influence the results

of the study. Examples in this case would be time of day of the deployment

and the developer doing deployment. Both could affect the deployment du-

ration, time of day via difference of resource utilization of compute resources

used at deploy and developer doing the deployment via the different local

configuration on her machine and it’s internet connection quality.

30
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No control for confounding variables will be done, as time resources to

do it were not available. Some of the data for controlling confounding vari-

ables was collected and is included in the anonymized dataset. Analysis of

possibility of controlling confounding variables is based on Pourhoseingholi

et al. review of controlling methods [25].

4.1 Research setup

Both deployment systems will be instrumented to push events to a logging

service. At the end of the measurement period those events will be analyzed,

relevant deployment data will be visualized and relevant statistics will be

calculated from the data.

4.1.1 Systems Under Study

The whole deployment of Kaiku is a deployment of a new version of Kaiku to

all Kaiku sites. In this thesis, this deployment system is named as System

I. A single site deployment consists of deploying a new version to a single

customer site and is considered as a different deployment system with name

System II. One System I deployment consists of multiple System II de-

ployments. This is illustrated with a graph of datasets, systems and their

relationships in Figure 4.1.

Figure 4.1: Systems under study and their relation to datasets visualized

as a graph. Kubernetes is abbreviated as ”k8s” in order to keep the graph

readable.

Measurement of the case where the new deployment system is the only
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Dataset Measurement target Systems under study

Dataset I Whole version deploy

to all sites

System Ia: VM-only whole version

deploy

System Ib: VMs + Kubernetes

mixed whole version deploy

Dataset II Version deploy to sin-

gle site

System IIa: Site deploy on VM

System IIb: Site deploy on k8s

Table 4.1: A table about systems under study and their relation to datasets

system in use is impossible at the moment, as the migration of most of the

sites is still in progress. But data gathering about the complete deployment

with the old system (before any sites were migrated, System Ia) and about

the hybrid case, when both system are in use at the same time (System Ib)

is possible and is the way that this thesis approaches the problem.

The relative amount of Kubernetes and VM sites during the measure-

ments is visualized in Figure 4.2. When calculating full deployment metrics,

all the deployments with only VMs are counted as part of the System Ia and

all the full deployments with at least one Kubernetes site as part of System

Ib. This will not give us a complete picture of the performance of the only

Kubernetes-only system, but it should allow us see how the charasteristics

of the system change when more sites are migrated to the new system.

When counting System II deployments any site deployed on a virtual

machine will be counted as System IIa and any site deployed on Kubernetes

as System IIb.

4.1.2 Instrumentation of The Deployment System

The deployment system of Kaiku has been instrumented by adding event-

sending logic to the scripts that handle deployment on System I and Sys-

tem II. These events are sent when any site deployment starts (System
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Figure 4.2: A stacked bar graph of the relative amount of System Ia and

System Ib based sites in a single full deployment by date
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II) or finishes and when the whole version deployment process starts or fin-

ishes (System I). The events contain site name, event name and deployment

system type. Events are sent to Kaiku’s centralized logging platform (Elas-

ticsearch [26]), which adds timestamp and other relevant metadata to the

event in question.

4.1.3 Data Analysis Tools

The deployment events data was analyzed with Python [27]. For statisti-

cal data analysis, a python library called SciPy [28] was used. A Jupyter

Notebook [29] was created for quick iteration and easier interoperatibility.

The Jupyter Notebook and anonymized data will be published for other re-

searchers to tinker with. Statistical framework for this thesis is the frequen-

tist statistical framework because author is familiar with it. The commonly

accepted threshold of 0.05 for statistical signicance (α = 0.05) was used.

4.2 Research Questions

RQ1: Is there a statistically significant difference in the whole

version deployment duration between the systems?

RQ2: Is there a statistically significant difference in the site-

normalized whole version deployment duration between

the systems?

RQ3: Is there a statistically significant difference in the single

site deployment duration between the systems?

RQ4: Is there a statistically significant difference in how the

site count affects the whole system deployment time be-

tween systems?

RQ5: Is there a statistically significant difference in the fre-

quency of whole system deployments between systems?
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RQ1 can be investigated with descriptive statistics and statistical tests

based on the data acquired from deployment instrumentation. More specifi-

cally normality of full deployment events from both systems will be checked,

then descriptive statistics will be calculated from the data and then sta-

tistical tests to check if those differences are statistically significant will be

done. Either Student’s T-test or Welch’s T-test will be used. The choice

between the tests will be based on the differences in variances of the popula-

tions in question [30]. Both statistical tests require the data to be normally

distributed, which means that we have to check the distribution of the data

before accepting the test in to use. Distribution checking will be done by

visually checking the histogram.

RQ2 can be investigated in the same manner as RQ1, but the data will

be normalized with the site count before the statistical analysis will be done.

RQ3 can be investigated by using the data from single site deployment

events. Descriptive statistics can be calculated from the data and statistical

test can be done to see if the differences are statistically significant.

RQ4 can be investigated by doing linear regression on deployment data

with regards of site count of both systems and then comparing the regression

parameters. This gives us estimates about the relative performance of the

systems as a function of the site count.

RQ5 might end dissolving, as the product being deployed is the same in

both deployment methods and thus it’s release cycle is the same. The de-

ployment process in use at Kaiku generally results in about two full deploys

in a week, and both systems are deployed in one full deploy. RQ5 will be

included still, because it is possible that our deployments are not always in

sync. RQ5 can be investigated by calculating the time delta between deploy-

ments in both systems and then analyzing these time deltas with descriptive

statistics and statistical tests.



CHAPTER 4. METHODOLOGY 36

4.3 Hypotheses

Our null hypothesis H0 for all research questions is that there is no statisti-

cally significant difference between the systems under comparison.

RQ1. Is there a statistically significant difference in the whole version de-

ployment duration between the systems?

The alternative hypothesis H1 is that deploying Kaiku’s product on Ku-

bernetes (System Ia) should be faster, as each single site deployment is

running in parallel, if the cluster has enough capacity available. The old

system (System Ib) runs deployment in a serial fashion and hence should

be slower.

This question will be answered using Dataset I.

RQ2. Is there a statistically significant difference in the site-normalized

whole version deployment duration between the systems?

The alternative hypothesis H1 for the site-normalized deployment dura-

tion is that the Kubernetes based system (System Ia) should be faster per

site, because of the parallelization of the deployment.

This question will be answered using Dataset I.

RQ3. Is there a statistically significant difference in the single site deploy-

ment duration between the systems?

The alternative hypothesis H1 for single site deployment is that the VM

based system (System IIa) should be faster, as it has most of the required

state and dependencies already in place. It is possible, that the Kubernetes

based system (System IIb) is faster, if image caching can be used effectively.

This question will be answered using Dataset II.

RQ4. Is there a statistically significant difference in how the site count affects

the whole system deployment time between systems?
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The alternative hypothesis H1 for scaling of the systems is that the

Kubernetes-based system (System Ib) should scale better. Scaling in this

case is viewed from the viewpoint of adding more customer sites to the deploy-

ment. Kubernetes deploys sites in parallel, so the deployment time should

increase sub-linearily. The old system (System Ia) is deploying sites one-

at-a-time, which will probably mean linear scaling in relation to number of

sites being deployed.

This question will be answered using Dataset I.

RQ5. Is there a statistically significant difference in the frequency of whole

system deployments between systems?

The alternative hypothesis H1 for deployment frequency is that it would

be different. This is improbable as the deployment systems are still tied

together.

This question will be answered using Dataset I.

4.4 Outlier Removal

In order to use the toolbox of statistical analysis and tests, the data under

analysis has to be well formed and follow certain guidelines. In this thesis,

following rules will be used to filter outliers and malformed data.

Before any outliers are removed, all the malformed data is removed. Mal-

formation in this thesis is a case when one can’t establish the start and

end events for a single site deployment (Dataset II) or whole version de-

ployment (Dataset I). All deployments with internal inconsistencies, like

different site-counts by different counting methods, will also be removed as

malformed data.

System I has some double deployments, as some sites are used as

“canary”-deployments. These canary deployments allow the tech support to

manually verify that the current version that is being deployed is not obvi-

ously broken before deploying it to all customer sites. These deployments
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are double-counted, as those sites are deployed twice and hence these double

deployments are not counted as outliers.

Outlier removal for Dataset I will be done by filtering any full deploys

that last longer than 150 minutes, are shorter than 40 minutes or contain less

than 40 sites or more than 70 sites. Deployments that don’t fill these assump-

tions are probably not real deployments, but someone using the deployment

tool to run partial deployments for a special single site deployments, or using

the tool to set site settings for all sites.

Outlier removal for Dataset II will be done by filtering any single site

deploy that differs more than 3 standard deviations from the mean. These

deployments are some kinds of anomalies that don’t reflect the normal per-

formance of the system.
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Results

This chapter introduces the results of the measurements made on System

I and System II. After a quick glance on the results per system, the sys-

tem are compared using measured variables and statistical analysis and tests

comparing the systems are reviewed. In the end the evaluation of the hy-

potheses for the research questions is done and those hypotheses are either

accepted or rejected based on the evidence from the instrumentation data.

All of the plots calculated for the data-analysis are color-coded in order

to clarify which system the plot or datapoint is representing. All datapoints

from the old system (System IIa, System Ia) are colored orange and data-

points from the new system (System IIb) are blue. Plots containing mixed

data (System Ib) are colored brown.

5.1 Results of Outlier Removal

The procedure and basis for outlier removal is explained in detail in section

4.4.

Results of outlier removal for System I can be seen in Figure 5.1. Re-

sults of outlier removal for System II can be seen in Figure 5.2. Most of

the data from both system fits inside our criteria and looks reasonably nor-

mally distributed, which is a pre-requisite for the statistical methods we use.

39
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Normality requirement for our statistical tests was introduced in 4.2

Figure 5.1: A collection of plots showing outlier removal and it’s effect on

the histogram of whole system deployment in System I

5.2 Whole Version Deployment Perfor-

mance, System I

Whole version deployment of Kaiku takes about 70 minutes, as one can see

from Figure 5.3.
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Figure 5.2: A collection of plots showing outlier removal and it’s effect on the

histogram of single site deployment in System II. All data with deviance

from the mean (z-score) greater that 3 standard distributions was discarded

as outlier.

A more detailed view with the amount of sites, deployment system in use

and deployment duration can be seen in Figure 5.4. From this figure one can

see that both System I deploy systems seem to have quite similar means,

but variance seems bigger in System Ia.

The site-normalized deployment duration is relevant from the business

viewpoint of a company in midst of growth, as growing means adding more
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Figure 5.3: Histogram of all System I whole version deployment durations

Figure 5.4: Scatterplot of whole version deployment, System I

customers and hence more sites to Kaiku. The site normalized view to de-

ployment systems can be found from Figure 5.5. Scaling of Kaiku with new
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sites seems about linear, as the site-normalized deployment time does not

seem to increase with the site count.

Figure 5.5: Site-normalized deployment duration in the two systems

5.3 Single Site Deployment Performance,

System II

Histograms of single site deployment performance can be found from figures

5.6 and 5.7. Data in both histograms looks reasonably normally distributed,

but System IIa data has a bit longer tail, which could point towards the data

being beta-distributed. This should not cause problems with data-analysis,

as most samples are nicely clustered.

A deployment of Kaiku to a single site takes about 50 seconds in System

IIa and about 180 seconds in System IIb.
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Figure 5.6: Histogram of all System IIa single site deploy durations, outliers

removed

Figure 5.7: Histogram of all System IIb single site deploy durations, outliers

removed
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Figure 5.8: Scatter plot of single site deployment duration in System II,

outlier removed

5.4 Statistical Analysis

Methodology for the statistical analysis was defined in 4.1.3.

Outliers were removed from data before any analysis towards answering

the research question was done. Results of outlier removal can be found from

5.1.

5.4.1 RQ1 Is There a Difference in The Whole Deploy-

ment Duration Between The Systems?

The null hypothesis H0 is that the two deploy systems have no statistical

difference in their deployment duration or single site deploy deploy duration.

The alternative hypothesis H1 is that the systems differ in their deployment
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Item

System Variable Value

Whole deploy duration in System Ia Number of samples 43.00

Mean 74.74

Variance 240.09

Whole deploy duration in System Ib Number of samples 23.00

Mean 76.04

Variance 385.56

Welch t-test, single site deploy System Ia

vs. System Ib

Test statistic -0.28

p-value 0.78

Table 5.1: Descriptive statistics and Welch t-test results about RQ1

duration. α was chosen to be 0.05 as described in section 4.1.3. Welch’s t-test

was chosen as a statistical test because the variances between systems dif-

fered. If systems differ statistically significantly the faster system is deduced

based on mean value.

Each deployment sample is independent from other samples and an as-

sumption that the samples are identically distributed on normal distribution

is made based on the visual inspection of the data.

Mean deployment duration on System Ib is within two minutes of the

mean duration on System Ia. Variances are quite different between systems.

From the statistical analysis presented in Table 5.1 it is concluded that

the alternative hypothesis H1 that the new system is faster can’t be accepted,

as the p-value of 0.78 is over 0.05.
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Item

System Variable Value

Whole deployment normalized by site count

System Ia

Number of samples 43.00

Mean (minutes) 1.24

Variance 0.09

Whole deployment normalized by site count

System Ib

Number of samples 23.00

Mean (minutes) 1.26

Variance 0.13

Welch t-test, whole deploy normalized Sys-

tem Ia vs. System Ib

Test statistic -0.26

p-value 0.79

Table 5.2: Descriptive statistics and Welch t-test results about RQ2

5.4.2 RQ2 Is There a Difference in The Site-

normalized Whole Deployment Duration Be-

tween The Systems?

To answer this question, the deployment duration has to be normalized with

regards to the site count and thus the deployment speed made more com-

parable across time. This is advisable as the site count changes between

deployments and site-count is probably the biggest parameter determining

the deployment duration.

As one can see from the Table 5.2, both systems have means that are

really close to each other. No significant difference can be made between

them as the p-value of 0.79 is over 0.05 choosen in methodology. Thus the

null hypothesis H0 holds for RQ2.
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Item

System Variable Value

Single site deploy duration in the System IIa Number of sam-

ples

2525.00

Mean (seconds) 60.94

Variance 309.06

Single site deploy duration in the System IIb Number of sam-

ples

318.00

Mean (seconds) 200.32

Variance 5348.25

Welch t-test, single site deploy System IIa vs.

System IIb

Test statistic -

32.31

p-value 0.00

Table 5.3: Descriptive statistics and Welch t-test results about RQ3

5.4.3 RQ3 Is There A Difference In The Single Site

Deployment Duration Between The Systems?

Results of the statistical analysis are presented in the Table 5.3.

Single site deployment ended up being a lot slower in the new system

(System IIb). Means differ by of about a hundred seconds to the advan-

tage of the old system (System IIa). This is a somewhat counter-intuitive

situation, as the whole system deployment duration not statistically differ-

ent, as was found in the analysis of RQ2. This is probably because of the

parallel nature of deployments in the System Ib. The finding is statistically

significant with p-value clearly under the p-value choosen in methodology.

Alternative hypothesis H1 is accepted.
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Figure 5.9: Linear regression comparison of the two deployment systems

5.4.4 RQ4 How Does the Scale Effect the Whole Sys-

tem Deployment Time in Both Systems?

This research question was investigated using linear regression implemented

using numpy stats library [31]. Results of the Least squares regression are

presented graphically in Figure 5.9 and numerically in 5.4.

Our linear regression models are quite ill-fitting to the data, with high

standard error values. R-value of System Ia model is quite low, and thus

the fit between model and data is not good. The model for System IIb

fares a bit better.

P-value for regression model of System Ia 0.82 is over the 0.05 choosen in

the methodology, hence the model us not statistically significant. Regression

model for System Ib is statistically significant with p-value of 0.01.

As only have one statistically significant model was found, a rigorous com-

parison between the models can’t be done. Alternative hypothesis H1 can’t
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System Variable Value

Linear regression with least squares, System Ia Slope 0.11

Intercept 68.05

r-value 0.04

p-value 0.82

std error 0.48

Linear regression with least squares, System Ib Slope -4.98

Intercept 377.53

r-value -0.56

p-value 0.01

std error 1.60

Table 5.4: Numerical results of linear regression analysis for RQ4

be accepted. But statistically significant model for System Ib is promising

for the prospect of improving the deployment speed with Kubernetes.

5.4.5 RQ5 Is There Difference in the Frequency of

Whole System Deployments Between Systems?

Date differences between successful deployments in both systems were calcu-

lated. Histograms of the deployment date deltas can be seen in Figure 5.10.

The number of samples for the new system is quite low and thus it is quite

hard to see if the time deltas are normally distributed.

Results of the statistical analysis are presented in Table 5.5. Based on

the analysis, it looks like our null hypothesis holds for RQ5, as the p-value

of our Welch’s T-test is 0.58, which is over 0.05.

Generally data for RQ5 seems quite non-normal and hence this analysis

is not on firm standing.
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Figure 5.10: A histogram of datetime deltas between successful deployments

in both systems

System Variable Value

Time delta between successful deployments,

System Ia

Number of samples 42.00

Mean (day) 4.45

Variance 16.45

Time delta between successful deployments,

System Ib

Number of samples 22.00

Mean (days) 5.03

Variance 15.01

Welch t-test, delta between successful de-

ployments System Ia vs. System Ib

Test statistic -0.56

p-value 0.58

Table 5.5: Descriptive statistics and Welch t-test results about RQ5
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5.5 Answers to Research Questions

RQ Description System H1 Ac-

cepted?

RQ1: Is there a statistically significant differ-

ence in the whole version deployment

duration between the systems?

System I No

RQ2: Is there a statistically significant differ-

ence in the site-normalized whole ver-

sion deployment duration between the

systems?

System I No

RQ3: Is there a statistically significant differ-

ence in the single site deployment du-

ration between the systems?

System II Yes

RQ4: Is there a statistically significant differ-

ence in how the site count affects the

whole system deployment time between

systems?

System I No

RQ5: Is there a statistically significant differ-

ence in the frequency of whole system

deployments between systems?

System I No

Generally my research failed to get statistically significant differences be-

tween the two deployment systems under comparison. Only research ques-

tion with a statistically significant answer was RQ3. Results for RQ3 are

clear, but from a business viewpoint it is not really interesting, as single site

deployment is not taking a lot of deployer time.

From the viewpoint of enacting Kaiku’s transition from VM’s System Ia

to Kubernetes System Ib as deployment systems, RQ4 is interesting, espe-

cially as Kaiku plans to grow in the future and this means deploying Kaiku

software to more customer sites. Even if RQ4 failed to achieve statistical
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significance, parts of the regression model used in it point towards better

per-site scaling for System Ib.

During the research both systems under study were in use and under

changes. This lowers the significance one should assign to the results.

5.6 Critique

The deployment systems are tied together, so full deployment is hard to

measure. The system under measurement is under constant change, as it is

being maintained and improved by people working under Kaiku. P-values

of many most research questions were under 0.05 during most of the data

gathering interval, but crucially not when the final data was exported.

Better planning of instrumentation would have enabled the separation the

systems better, as the stages of the deploy process could have been measured

and compared. A quick search for a unified software system deployment

measurement methodology was conducted, but it did not find a validated

and clear methodology to base the measurements methodology on. This

lowers the reproducibility and relevance of the results from a general research

viewpoint.

Analysis of RQ5 raised some questions about the normality of data. In-

vestigating it with data-analysis tools better suited for beta-distributions

would have been prudent.



Chapter 6

Discussion

In this chapter the results of the thesis, improvement to implementing a simi-

lar study and possible new paths for research around the thesis are discussed.

6.1 Overview

The thesis failed to generate statistically significant results for four out of

five research questions. Overview of the results can be found in section 5.5.

The only research question with statistically significant result is not really

applicable from a business viewpoint. Statistical significance will improve

with more data gathering, but sadly this can’t be done in the timeframe of

this thesis.

During the data gathering there were time intervals when research ques-

tions had statistically significant answers, but changing the data-gathering

interval in situ without methodological basis would have been inprudent and

would have lead the thesis to the methodological problems (“multiple com-

parisons”) outlined by Gelman and Loken in [32].

From the viewpoint of Kaiku Health, this thesis leaves a complete data-

analysis and instrumentation pipeline in place, which can be used to verify

that the transition from legacy infrastructure to orchestrated containers re-

ally improves the software deployment performance of Kaiku. Running the

54
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data-analysis with new data takes only few minutes and can thus be easily

used.

From the viewpoint of the author, doing this thesis taught one a lot more

about study design and the myriad problems that face ardent researcher

struggling to wrangle knowledge from world with statistical analysis. The

author is happy to have learned a lot more about LATEX, Jupyter Notebooks

and especially about SciPy in action.

From the viewpoint of DevOps, this thesis does not provide a lot of value.

The background provided by Forsgren et al. in their research helped the

author a lot, but sadly the statistically insignificant findings do not pro-

vide any further information to DevOps community. Revisiting the thesis

data-analysis once the Kaiku’s infrastructure transformation is ready could

possibly provide some evidence that container orchestration can be used to

improve software deployment performance, but even that speculative evi-

dence would have to be discounted quite heavily, as it would originate from

a single case study.

6.2 Possible Improvements

The instrumentation of both deployment systems could have been better.

This would have given us better visibility inside the deployment systems.

On some level, the build system of Kaiku is also partly responsible for the

deploy, as it builds the image (for System Ib) and static assets for both

systems. The choice of limiting asset and image build outside the scope was

done because of resource reasons.

6.3 Further Avenues for Research

Measurement of software deployment does not seem to be a well-established

area of research with clear, common methodologies, that would make the

comparison of measurements between systems accurate. There seems to be
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surprisingly little academic research on the topic. Hence a common method-

ology and agreements on what to measure and how would probably benefit

the field. Especially commonly agreed thresholds for start and end of deploy-

ment would be beneficial, as those would allow more accurate comparisons

of different system.

6.4 The Author’s Relation to Kaiku

The author is employed by Kaiku Health and hence there is a possibility of

conflict of interest. Views put forth in this thesis are my own and not those

of Kaiku Health.



Bibliography

[1] Nicole Forsgren, Jez Humble, and Gene Kim. Accelerate: The Science

of Lean Software and DevOps: Building and Scaling High Performing

Technology Organizations. en. IT Revolution, Mar. 2018. isbn: 978-1-

942788-35-5.

[2] Nicole Forsgren and Jez Humble. The Role of Continuous Delivery

in IT and Organizational Performance. en. SSRN Scholarly Paper

ID 2681909. Rochester, NY: Social Science Research Network, Oct.

2015. url: https://papers.ssrn.com/abstract=2681909 (visited on

06/05/2019).

[3] Floris Erich, Chintan Amrit, and Maya Daneva. Report: DevOps Lit-

erature Review. Oct. 2014. doi: 10.13140/2.1.5125.1201.

[4] Andreas Brunnert et al. “Performance-oriented DevOps: A Research

Agenda”. In: arXiv:1508.04752 [cs] (Aug. 2015). arXiv: 1508.04752.

url: http://arxiv.org/abs/1508.04752 (visited on 06/05/2019).

[5] Kathleen M. Eisenhardt and Jeffrey A. Martin. “Dynamic capabilities:

what are they?” en. In: Strategic Management Journal 21.10-11 (2000),

pp. 1105–1121. issn: 1097-0266. doi: 10 . 1002 / 1097 - 0266(200010 /

11 ) 21 : 10 / 11<1105 :: AID - SMJ133 > 3 . 0 . CO ; 2 - E. url: https : / /

onlinelibrary.wiley.com/doi/abs/10.1002/1097-0266%28200010/

11%2921%3A10/11%3C1105%3A%3AAID-SMJ133%3E3.0.CO%3B2-E (visited

on 07/18/2019).

57

https://papers.ssrn.com/abstract=2681909
https://doi.org/10.13140/2.1.5125.1201
http://arxiv.org/abs/1508.04752
https://doi.org/10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E
https://doi.org/10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0266%28200010/11%2921%3A10/11%3C1105%3A%3AAID-SMJ133%3E3.0.CO%3B2-E
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0266%28200010/11%2921%3A10/11%3C1105%3A%3AAID-SMJ133%3E3.0.CO%3B2-E
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0266%28200010/11%2921%3A10/11%3C1105%3A%3AAID-SMJ133%3E3.0.CO%3B2-E


BIBLIOGRAPHY 58

[6] Lianping Chen. “Continuous Delivery: Huge Benefits, but Challenges

Too”. In: IEEE Software 32.2 (Mar. 2015), pp. 50–54. issn: 0740-7459,

1937-4194. doi: 10.1109/MS.2015.27.

[7] Martin Fowler. “Continuous Integration”. en. In: (), p. 14. url: http:

//www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/

10_Fowler_Continuous_Integration.pdf.

[8] W. W. Royce. “Managing the Development of Large Software Systems:

Concepts and Techniques”. In: Proceedings of the 9th International

Conference on Software Engineering. ICSE ’87. event-place: Monterey,

California, USA. Los Alamitos, CA, USA: IEEE Computer Society

Press, 1987, pp. 328–338. isbn: 978-0-89791-216-7. url: http://dl.

acm.org/citation.cfm?id=41765.41801 (visited on 11/17/2019).

[9] Benedikt Martens, Marc Walterbusch, and Frank Teuteberg. “Costing

of Cloud Computing Services: A Total Cost of Ownership Approach”.

In: 2012 45th Hawaii International Conference on System Sciences.

ISSN: 1530-1605. Jan. 2012, pp. 1563–1572. doi: 10.1109/HICSS.2012.

186.

[10] Prateek Sharma et al. “Containers and Virtual Machines at Scale:

A Comparative Study”. en. In: Proceedings of the 17th Inter-

national Middleware Conference on - Middleware ’16. Trento,

Italy: ACM Press, 2016, pp. 1–13. isbn: 978-1-4503-4300-8. doi:

10.1145/2988336.2988337. url: http://dl.acm.org/citation.cfm?

doid=2988336.2988337 (visited on 09/05/2018).

[11] Emiliano Casalicchio. “Container Orchestration: A Survey”. en. In:

Systems Modeling: Methodologies and Tools. Ed. by Antonio Puliafito

and Kishor S. Trivedi. EAI/Springer Innovations in Communication

and Computing. Cham: Springer International Publishing, 2019,

pp. 221–235. isbn: 978-3-319-92378-9. doi: 10 . 1007 / 978 - 3 - 319 -

92378-9_14. url: https://doi.org/10.1007/978-3-319-92378-9_14

(visited on 02/11/2020).

https://doi.org/10.1109/MS.2015.27
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://dl.acm.org/citation.cfm?id=41765.41801
http://dl.acm.org/citation.cfm?id=41765.41801
https://doi.org/10.1109/HICSS.2012.186
https://doi.org/10.1109/HICSS.2012.186
https://doi.org/10.1145/2988336.2988337
http://dl.acm.org/citation.cfm?doid=2988336.2988337
http://dl.acm.org/citation.cfm?doid=2988336.2988337
https://doi.org/10.1007/978-3-319-92378-9_14
https://doi.org/10.1007/978-3-319-92378-9_14
https://doi.org/10.1007/978-3-319-92378-9_14


BIBLIOGRAPHY 59

[12] Emiliano Casalicchio. “Autonomic Orchestration of Containers: Prob-

lem Definition and Research Challenges”. In: Jan. 2017. doi: 10.4108/

eai.25-10-2016.2266649.

[13] Spyridon V. Gogouvitis et al. “Seamless computing in industrial sys-

tems using container orchestration”. en. In: Future Generation Com-

puter Systems (July 2018). issn: 0167-739X. doi: 10.1016/j.future.

2018.07.033. url: http://www.sciencedirect.com/science/article/

pii/S0167739X17330236 (visited on 11/17/2019).

[14] etcd. url: https://etcd.io/ (visited on 04/22/2020).

[15] Concepts (Kubernetes documentation). en. url: https://kubernetes.

io/docs/concepts/ (visited on 02/11/2020).

[16] Kubernetes Components. en. url: https : / / kubernetes . io / docs /

concepts/overview/components/ (visited on 12/02/2019).

[17] Brendan Burns et al. Borg, Omega, and Kubernetes. en. url: https:

//storage.googleapis.com/pub-tools-public-publication-data/

pdf/44843.pdf.

[18] Gigi Sayfan. Mastering Kubernetes. en. Google-Books-ID: dnc5DwAAQBAJ.

Packt Publishing Ltd, May 2017. isbn: 978-1-78646-985-4.

[19] Ethan Basch et al. “Symptom Monitoring With Patient-Reported

Outcomes During Routine Cancer Treatment: A Randomized Con-

trolled Trial”. In: Journal of Clinical Oncology 34.6 (Feb. 2016),

pp. 557–565. issn: 0732-183X. doi: 10.1200/JCO.2015.63.0830. url:

http://ascopubs.org/doi/10.1200/JCO.2015.63.0830 (visited on

08/14/2017).

[20] Ruby on Rails. url: https : / / rubyonrails . org/ (visited on

04/23/2020).

[21] Nginx. en. Page Version ID: 951649505. Apr. 2020. url: https://en.

wikipedia.org/w/index.php?title=Nginx&oldid=951649505 (visited

on 04/23/2020).

https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.1016/j.future.2018.07.033
https://doi.org/10.1016/j.future.2018.07.033
http://www.sciencedirect.com/science/article/pii/S0167739X17330236
http://www.sciencedirect.com/science/article/pii/S0167739X17330236
https://etcd.io/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/44843.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/44843.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/44843.pdf
https://doi.org/10.1200/JCO.2015.63.0830
http://ascopubs.org/doi/10.1200/JCO.2015.63.0830
https://rubyonrails.org/
https://en.wikipedia.org/w/index.php?title=Nginx&oldid=951649505
https://en.wikipedia.org/w/index.php?title=Nginx&oldid=951649505


BIBLIOGRAPHY 60

[22] Passenger - Enterprise grade web app server for Ruby, Node.js, Python.

en. url: https://www.phusionpassenger.com/?ref=og (visited on

04/23/2020).

[23] PostgreSQL: About. url: https://www.postgresql.org/about/ (visited

on 04/23/2020).
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Appendix A

Data

The Data and the data-analysis Jupyter Notebook will be made available

after the thesis has been approved. The data will be anonymized. The URL

for the data and analysis will be https://thesis.sampsa.laapotti.net/.
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